IDENTIFICATION OF HALOGEN SUBSTITUENTS IN NATURAL PRODUCTS BY MEASUREMENT OF ¹³C SPIN-LATTICE RELAXATION TIMES AND INTEGRATED INTENSITIES

RAYMOND S. NORTON

Roche Research Institute of Marine Pharmacology, P.O. Box 255, Dee Why, 2099, Australia

(Received in the UK 19 April; Accepted for publication 16 May 1977)

Abstract—A method is proposed for differentiating brominated carbons from chlorinated carbons by means of natural-abundance 13 C NMR spectroscopy. The basis of the method is that the spin-lattice relaxation behaviour of brominated carbons is influenced by carbon-bromine scalar interactions, which can lead to shortened 13 C spin-lattice relaxation times and reduced values of the nuclear Overhauser enhancement. C-Cl scalar interactions make a negligible contribution to the spin-lattice relaxation of chlorinated carbons. These effects are illustrated by measurement of the 13 C spin-lattice relaxation times and integrated intensities of chloro-, bromo and iodobenzene and chloro-, bromo- and iodocyclohexane. The method is then tested on four polyhalogenated marine natural products. The results indicate that 13 C relaxation measurements can be used to distinguish brominated carbons from chlorinated carbons in the case of halogenated quaternary carbons, sp^2 hydridized methine carbons and some sp^3 hydridized methine carbons, but not in the case of halogenated methylene carbons or gem-dihalo substituted methine carbons.

A number of polyhalogenated metabolites have recently been isolated from marine organisms, ^{1,2} in particular algae. ³⁻⁶ Many of these metabolites contain both bromine and chlorine. In these cases it has often been difficult to locate the halogens in the molecule without recourse to X-ray crystallography, a situation that has arisen partly because natural-abundance ¹³C NMR spectroscopy, which is used extensively in structure determination, ^{7,8} does not permit the differentiation of brominated carbons from chlorinated carbons. The substituent effects of bromine and chlorine on ¹³C chemical shifts are similar, ⁷ and the ¹³C-¹H scalar coupling constants of chlorinated and brominated carbons are comparable. ⁷

In this report we show the potential and some limitations of the measurement of 13C spin-lattice relaxation times and integrated intensities as a means of distinguishing brominated carbons from chlorinated carbons. The basis of this approach is that brominated carbons are influenced by carbon-bromine scalar interactions, 2-12 which can lead to shortened 13C spinlattice relaxation times and reduced values of the NOE. On the other hand, C-Cl scalar interactions make a negligible contribution to the spin-lattice relaxation of chlorinated carbons. This behaviour is confirmed in the present communication by measurement of the ¹³C spinlattice relaxation times and integrated intensities of three monohalogenated benzene derivatives, three monohalogenated cyclohexane derivatives, and β -bromostyrene. The general applicability of the method is then examined with the use of a number of polyhalogenated marine natural products.

THEORETICAL CONSIDERATIONS

A number of interactions can contribute to the relaxation of ¹³C nuclei, ⁸⁻¹² but the relaxation of most protonated carbons of large organic molecules is dominated by ¹³C-¹H dipole-dipole interactions with directly-bonded hydrogens. ⁸⁻¹³ The relaxation of nonprotonated carbons is also dominated by the ¹³C-¹H dipolar mechanism

in many cases.^{13,14} Contributions from the spin-rotation relaxation mechanism^{15,16} can usually be ignored for large organic molecules,¹¹⁻¹⁴ and chemical shift anisotropy^{15,16} makes a negligible contribution to ¹³C relaxation at low magnetic field strength.^{11,12,17} Dipolar interactions of carbon with nuclei other than protons (e.g. ¹⁴N) must be taken into account, but these contributions can be calculated fairly accurately,¹⁴ provided the appropriate rotational correlation times are known. In the absence of paramagnetic impurities, the only other significant contribution to ¹³C relaxation is likely to come from scalar interactions.

If a ¹³C nucleus interacts with a nucleus X which is relaxing rapidly, such that its spin-lattice relaxation time T₁^x is short compared with the reciprocal of the ¹³C-X spin-spin coupling constant, A (in radians sec⁻¹), then the ¹³C may undergo relaxation by a mechanism known as "scalar relaxation of the second kind". ¹⁵ In the case of a molecule undergoing isotropic rotational reorientation, the contribution of this interaction to the spin-lattice relaxation time (T₁) of a ¹³C nucleus is given by eqn (1), ^{15,16}

$$\frac{1}{T_1} = \frac{2A^2}{3}S(S+1)\frac{{T_1}^x}{1+(\omega_S-\omega_S)^2({T_1}^x)^2}$$
(1)

where S is the spin quantum number of nucleus X, T_1^x is the spin-lattice relaxation time of nucleus X, and ω_c and ω_x are the resonance frequencies (in radians sec⁻¹) of ¹³C and X, respectively. Nuclei with $S \ge 1$ may undergo efficient relaxation as a result of quadrupolar interactions. ^{15,16} In this case, T_1^x is given by eqn (2), ¹⁵ where

$$\frac{1}{T_1^x} = \frac{3}{40} \frac{2S+3}{S^2(2S-1)} \left(1 + \frac{n^2}{3}\right) \left(\frac{e^2 Qq}{\hbar}\right)^2 \tau_R \tag{2}$$

n is the asymmetry parameter^{15,18} and (e²Qq/h) the quadrupole coupling constant.^{15,18} Note that eqn (2) is valid only in the "extreme narrowing limit."^{15,16}

2578 R. S. NORTON

Scalar interactions make a significant contribution to the spin-lattice relaxation of a ^{13}C nucleus only when $1/T_1{}^x \approx (\omega_\text{c} - \omega_\text{x}).$ For those halogen nuclei with S>1, the values of $2\pi(\omega_\text{c} - \omega_\text{x}) \times 10^{-6}$ at 14.1 kG are:

Thus, we expect scalar interactions to contribute to the relaxation of brominated carbons and, to a lesser extent, iodinated carbons, but not to that of chlorinated carbons. Indeed, the presence of scalar relaxation for ¹³C nuclei directly bonded to bromine has been reported for a number of simple organic molecules. ^{9-12,19} In bromobenzene, differentiation of ¹³C-⁷⁹Br and ¹³C-⁸¹Br relaxation has been reported. ^{12,19} For carbons bonded to ⁷⁹Br scalar relaxation dominates, but for carbons bonded to ⁸¹Br it is likely that ¹³C-⁸¹Br dipolar relaxation and scalar relaxation both contribute significantly to ¹³C relaxation. ^{12,19}

[†]The rationale for these conclusions is as follows. A decrease in the rate of overall molecular reorientation in DMSO would lead to an increase in the efficiency of the 13C-1H dipolar mechanism (T₁ predicted by considering interactions with ortho protons decreases to ~ 300 sec.). The efficiency of scalar relaxation would also increase in DMSO, so we would expect a decrease in the observed T₁, with little or no change in NOE (depending on whether or not the relative efficiencies of the scalar and ¹³C-¹H dipolar mechanisms altered). On the other hand, the decrease in the rate of overall reorientation would lead to a decrease in the efficiency of the spin-rotation relaxation mechanism. 15,16 This decrease, coupled with an increase in efficiency of the 13C-1H dipolar contribution would lead to an increase in NOE. The change in T₁ can be predicted by assuming that only the spin-rotation and ¹³C-¹H dipolar mechanisms are important in CD3CN. This yields values of 137 and 320 sec., respectively, for the contributions to T₁ of the two mechanisms in CD₃CN. From known equations 15,16 we estimate that the corresponding in DMSO would be 209 and 210 sec. This yields a total T_1 of 105 sec. and NOE = 2.0. Thus, both T_1 and the NOE would increase in DMSO if spin-rotation dominated.

These interactions are expressed as a reduction in the T_1 (compared with that calculated for purely $^{13}C^{-1}H$ dipolar relaxation) and the NOE.^{7,8,20}

RESULTS AND DISCUSSION

Table 1 shows the 13 C spin-lattice relaxation times and integrated intensities for some monohalogenated benzene and cyclohexane derivatives. In each case, the T_1 values for carbons 2-6 decrease as the size of the halogen substituent increases, and the ratio $T_1(C-2, C-3, C-5, C-6)_a/T_1(C-4)$ increases. The latter result probably reflects an increase in the extent of anisotropy of molecular reorientation. The T_1 for C-1 of bromobenzene is shorter than that for C-4, whereas in chlorobenzene the T_1 for C-1 is considerably longer than that for C-4. As mentioned above, the relaxation of C-1 of bromobenzene has been analysed previously 12,19 in terms of scalar relaxation for $^{13}C^{-79}$ Br, and a mixture of scalar relaxation and $^{13}C^{-81}$ Br dipolar relaxation for $^{13}C^{-81}$ Br. These interactions account for the reduction in NOE of C-1 of bromobenzene (Table 1).

In the case of C-1 of chlorobenzene in CD₃CN, the predicted T₁ is ~450 sec if only ¹³C-¹H dipolar interactions with the ortho protons¹⁴ are considered. However, the results in Table 1 ($T_1 = 96$ sec, intensity = 1.6) indicate that other interactions dominate the relaxation of this carbon. The most likely contributors are spin-rotation^{11,12} and ¹³C-Cl scalar interactions. We distinguished between these two mechanisms by measuring T₁ values and integrated intensities for chlorobenzene in d₆-DMSO, where the rate of overall molecular reorientation is decreased (as indicated by the decrease in the T₁ values for C-2 to C-6, see Table 1). If scalar interactions dominated the relaxation, a reduction in the T₁ of the substituted carbon would be expected, with little or no change in the NOE, whereas, if spin-rotation dominated, increases in both T₁ and NOE would be observed.† The results in Table 1 indicate that spin-rotation dominates the

Table 1. Spin-lattice relaxation times and integrated intensities for carbons of monohalogenated benzene and cyclohexane derivatives

Sample ^a	T ₁ (sec) ^b			Intensity c			
Samp re	C-1 C-2	C-3 C-5	C-4	C-1	C-2 C-6	C-3 C-5	C-4
Chlorobenzene	96 19.5	20.0	15.7	1.6	6.2	6.5	3.0
Chlorobenzene d	118 12.9	12.2	10.5	2.1	6.4	6.4	3.0
Bromobenzene	∿7 ^e 16.4	15.2	11.2	1.0	6.6	6.1	3.0
Iodobenzene	8.9 11.8	11.6	7.1	1.1	6.0	6.1	3.0
Chlorocyclohexane	19.3 11.4	11.5	9.9	2.9	6.0	f	f
Bromocyclohexane	∿10 ^e 8.9	8.7	7.2	2.3	5.7	5.8	3.0
Iodocyclohexane	9.5 6.3	6.5	4.8	2.9	6.2	6.2	3.0

[&]quot;70% (v/v) in CD₃CN at 31°, unless otherwise indicated.

^bEstimated accuracy is ± 10%.

[°]Normalised by setting intensity of C-4 equal to 3.0. Estimated accuracy is \pm 10%. In some cases the absolute NOE of carbons 2 to 6 was determined by gated proton decoupling, and found to be equal to 3.0 within experimental error.

^d50% (v/v) in (CD₃)₂SO at 31°.

Relaxation not decribed by a single exponential, because relaxation times of carbons bonded to ⁷⁹Br and ⁸¹Br differ from one another. ^{12,19}

¹C-3/C-5 and C-4 resonances overlap (total intensity = 9.3, when intensity of C-2/C-6 set to 6.0).

relaxation of C-1 of chlorobenzene in CD₃CN (T_1 spinrotation \approx 140 sec), consistent with the expectation that 13 C-Cl scalar interactions would be negligible. $^{11.12}$

The substituted carbon of iodobenzene has a short T_1 and small NOE (Table 1), indicating that interactions other than $^{13}\text{C}^{-1}\text{H}$ dipolar dominate its relaxation. The T_1 values of the *protonated* carbons of iodobenzene are *shorter* than those of chlorobenzene, so that the contribution of spin-rotation to T_1 of C-1 is likely to be significantly longer than 140 sec. Thus, the major contribution to the T_1 of this carbon probably comes from $^{13}\text{C}^{-127}\text{I}$ scalar interactions ($^{13}\text{C}^{-127}\text{I}$ dipolar interactions make a negligible contribution).† Contributions from $^{13}\text{C}^{-127}\text{I}$ scalar interactions to the relaxation of carbons in substituted methanes have been observed previously, $^{9.11}$ but the effects have been small.

In chloro- and iodocyclohexane the substituted carbons have the full NOE, and their T₁ values are twice as long as those of C-4 in each case (Table 1), indicating that the relaxation of these carbons is dominated by ¹³C-¹H dipolar interactions. In the case of bromocyclohexane, the NOE of the substituted carbon is reduced and its T₁ is shorter than expected for purely ¹³C-¹H dipolar relaxation (Table 1). These effects can be ascribed to C-Br scalar relaxation. ¹² However, not that the effective rotational correlation time for the (C-1)-Br interaction is probably longer than that for the (C-1)-¹H dipolar interaction.

The above results confirm that scalar interactions make a significant contribution to the relaxation of brominated carbons, a smaller contribution in the case of iodinated carbons, and a negligible contribution in the case of chlorinated carbons. As we are concerned with distinguishing brominated carbons from chlorinated carbons, it appears that ¹³C relaxation measurements will be helpful, provided we can ignore contributions from spin-rotation, chemical shift anisotropy, and paramagnetic impurities. These criteria are satisfied in the following examples.

†The possibility that paramagnetic impurities are responsible for the observed reduction of T₁ and NOE was eliminated by a control experiment in which the T₁ and NOE of chlorobenzene were measured in the presence of an equal volume of iodobenzene. The T₁ and NOE values of the halogenated carbons in both species were essentially identical with those given in Table 1.

Costatol (1) and costatone (2) are polyhalogenated monoterpenes from the red alga Plocamium costatum.4. The T₁ values and integrated intensities for the carbons of costatol are given in Table 2. These results allow the positions of the halogens to be assigned given the basic skeleton and the information that costatol contains 3 chlorine atoms and 1 bromine atom. Thus, for the nonprotonated carbon C-5, the absence of a significant reduction in the T₁ and NOE values is not consistent with bromine substitution. A similar argument applies to the halogenated methine carbons C-1 and C-3, which have T₁ and NOE values identical with those of C-7. Thus, we must place the bromine on C-8. The relaxation of this carbon is dominated by ¹³C-¹H dipolar interactions because C-Br scalar interactions cannot compete effectively when a carbon is bonded to two hydrogens. Note that costatol behaves as an isotropic rigid rotor, 15,16 i.e. the NT₁ values (N = number of directly-bonded hydrogens) for the CH and CH2 carbons are the same, although both Me groups undergo internal rotation.

Costatone (2) contains 2 chlorine atoms and 2 bromine atoms. The 13C T₁ values and integrated intensities are given in Table 2. As in the case of costatol, we can establish that C-5 is not brominated. However, in distributing the remaining chlorine and 2 bromines between C-1 and C-8 we cannot make use of relaxation measurements. The relaxation behaviour of C-1 is consistent with chlorine substitution, but the contribution of the 2 bromines to C-8 relaxation is much less that expected on the basis of the bromocyclohexane data (Table 1). This effect may be due to a change in the quadrupole coupling constant 18 as a result of a change in the electric field gradient¹⁸ at the bromine, or to a change in the C-Br scalar coupling constant. In any case, it appears that the method may not be useful for gem-dihalo substituted protonated carbons (see below).

In order to determine the effect of bromine substituents on the relaxation of olefinic sp^2 hydridized carbons, we examined the ¹³C relaxation behaviour of the fimbrolides 3a and 3b isolated from the red alga Delisea fimbriata (Bonnemaisoniaceae). Measurements were carried out on a mixture of 3a and 3b (ratio 1.7:1; total solute 1.3M). The results are given in Table 2. In each case the brominated carbon C-3 is readily identified. In 3a the dibrominated olefinic carbon C-5 has a T_1 value approximately half that of the monobrominated carbon C-3, which suggests that the effects of the two bromine substituents on the spin-lattice relaxation rate of C-5 are independent of one another, in contrast to the case of C-8 of 2 (see above).

The relaxation behaviour of C-4 in 3a emphasizes an important point, viz. that the measurement of integrated intensities alone cannot be used as evidence for bromine substitution in the case of quaternary carbons. The long T₁ of this carbon indicates that it is not relaxed by C-Br scalar interactions, and the low intensity simply reflects the fact that ¹³C-¹H dipolar interactions make a negligible contribution to its relaxation because the nearest hydrogens are four bonds removed. This carbon is probably relaxed by a mixture of C-Br dipolar interactions and chemical shift anisotropy, weak though these two contributions are. In 3b the C-5 hydrogen makes a significant contribution to the relaxation of C-4.

In the case of C-5 of 3b the directly-bonded hydrogen and bromine both contribute significantly to its spinlattice relaxation. Thus, it appears that relaxation measurements can be used to identify the brominated 2580

Table 2. Spin-lattice relaxation times and integrated intensities for carbons of 1, 2, 3a and 3b.

Carbon ^b	1		2		3a		3 b	
	δ	$T_1(int.)^d$	80	$T_1(int.)^d$	δ^c	$T_1(int.)^d$	δ^c	$T_1(int.)^{\tilde{d}}$
1	115.6	1.8 ₅ (3.0)	113.3	1.8(2.9)	164.5	∿180(2.1)	165.8	~120(1.8)
2		ϵ	h		137.9	47(2.6)	133.8	52(2.4)
3	56.4	1.95(2.8)	67.6	1.9(3.0)	128.2	$11(1.7^{j})$	129.9	8(0.9)
4	37.0	$1.1 (3.1)^f$	35.0	1.0(3.0)	144.6	>200(1.2)	149.9	~120(2.0)
5		e	h		81.2	4.1(0.8)	90.6	2.6(2.1)
6		e	h		25.7	2.2(2.7) ^k	25.0	2.3(2.9) ^k
7	71.2	1.9 (3.0)	96.9	27(2.9)	28.7	2.5(3.0)	28.9	3.1 ¹ (3.0)
8	41.4	$1.0_{5}(3.1)^{f}$	51.6	1.5(2.75)	22.4	3.3(3.1)	22.4	3.3(3.1)
9	14.4	6 (3.0) ^g	13.8	4.9(3.0) ⁱ	13.6	3.7(3.1)	13.6	3.7(3.1)
10	16.2	4 (3.0) ^g	16.0	2.6(3.0) ⁱ				

- a. 0.6 1.1M solutions in CDCl₃ at 32 33⁰.
- b. Numbering system is shown in structure diagrams.
- c. Chemical shift (in ppm downfield from TMS).
- d. Spin-lattice relaxation times in sec and integrated intensities (in parentheses). Integrated intensities were normalised in each case by assigning a value of 3.0 to the average of the intensities of nonhalogenated, protonated carbon resonances, as follows: $\frac{1}{2}$, C-7, C-9 and C-10; $\frac{2}{3}$, C-3, C-4, C-9 and C-10; $\frac{3}{4}$ and $\frac{3}{4}$ b, C-6, C-7, C-8 and C-9. Estimated accuracy of T₁ values and intensities is $\frac{1}{2}$ 15% for protonated carbon resonances, $\frac{1}{2}$ 20% for quaternary carbon resonances.
- e. Values for the quaternary carbon resonances at 135.9, 134.0 and 129.7 ppm are 27(2.4), 29(2.6) and 28(2.4), respectively.
- f. Assignments may be reversed.
- g. Assignments may be reversed.
- h. Values for the quaternary carbon resonances at 137.1, 131.9 and 125.6 ppm are 26(2.4), 30(2.4) and 41(2.4), respectively.
- i. Assignments may be reversed.
- j. A small resonance from an impurity contributes here; true intensity of C-3 resonance < 1.7.
- k. Assignments of C-6 and C-7 resonances are based on T₁ values.
- 7. Estimated accuracy is about $\stackrel{+}{-}$ 25%, due to overlap with larger resonance from C-7 of $\frac{3}{2}a$.

carbon of a terminal vinyl bromide group. This was verified in the case of β -bromostyrene. The T_1 values (in sec) and integrated intensities (in parentheses) for the carbons of trans β -bromostyrene in CDCl₃ at 32° are: C-1', 8.3 (3.0); C-2', 4.3 (2.0); C-1, 69 (2.4); C-2/C-6, 7 (6.0); C-3/C-5, 7 (6.6); C-4, 5 (4.8). The resonances of C-2 to C-6 overlap with resonances from the cis isomer (10%), so the T_1 and NOE values of these carbons are less accurate than those of C-1, C-1' and C-2'. However, it is clear that the spin-lattice relaxation of C-2' is affected significantly by the directly-bonded bromine. The value of the NOE suggests that the bromine and the directly-bonded proton contribute

about equally to its spin-lattice relaxation. The T₁ values support this conclusion, but deviations from rigid isotropic rotational reorientation prevent a more quantitative interpretation.

Finally, we examined the relaxation behaviour of a marine natural product containing four brominated quaternary carbons, three in Br-C=groups and one in a Br-C-Br group. The rotational correlation time of the molecule in CDCl₃ at 32° was about 0.03 nsec. The T_1 values (in sec) and integrated intensities for the three brominated allylic carbons were 10(1.0), 16(0.9) and 13(1.0), and for the *gem*-dibromo carbon 10(1.5). Thus,

the relaxation of the allylic carbons appears to be dominated by C-Br scalar interactions. However, there is a small contribution to relaxation of the *gem*-dibromo carbon from ¹³C-¹H dipolar interactions (with the hydrogens on an adjacent CH₂ group).

The above examples demonstrate the advantages, and some of the limitations, of the use of ¹³C relaxation measurements for distinguishing brominated carbons from chlorinated carbons. It is essential to measure the T₁ and NOE of all carbons in a molecule, not only to identify the brominated carbons, but also to establish that the molecule behaves as an isotropic rigid rotor. If this condition is satisfied, one can make use of both NOE and T₁ values to identify brominated carbons, whereas deviations from this behaviour may limit the utility of T₁ values in this respect. Finally, it is essential to eliminate all possible contributions to ¹³C relaxation other than ¹³C-¹H dipolar interactions and ¹³C-halogen scalar interactions.

It is expected that the approach described in this paper will be useful mainly in the field of marine natural products chemistry (see Introduction), but the recent isolation of some brominated metabolites from terrestrial organisms²¹ suggests that applications in this field may be forthcoming. The method is nondestructive and measurements can be carried out on as little as 30-40 mg of material with the use of 10-mm sample tubes. Quantities lower than this would be required if 1-mm sample tubes or micro-cells were employed. In a subsequent paper,²² we describe the application of this approach to determination of the structure of three polyhalogenated monoterpenes from algae.

EXPERIMENTAL

Materials. Chloro-. bromo- and iodobenzene and chloro-, bromo- and iodocyclohexane were obtained from Fluka (Puriss, or Purum grade) and used as received. β-Bromostyrene from Fluka (Pract. grade. nominally about 20% cis) was passed through a column of alumina before use. The sample was found to consist of 90% trans isomer and 10% cis by ¹³C NMR (see below). The solvents CDCl₃, CD₃CN and (CD₃)₂SO were all spectroscopic grade (>99% deuterated). Samples of 1, 2, 3a and 3b were kindly provided by Drs. R. Kazlauskas and R. J. Wells of this Institute. The methods of isolation have been described. ^{4.6}

Methods. Natural-abundance 13 C NMR spectra were obtained at 15.04 MHz on a Jeol FX-60 spectrometer operating in the pulsed Fourier transform mode, with on-resonance noise-modulated proton decoupling and 10 mm o.d. spinning sample tubes. Probe temp. was $32\pm1^{\circ}$. All spectra were accumulated in 8192 time-domain addresses, and processed with 0.7-1.2 Hz exponential broadening. Samples were degassed by bubbling nitrogen through the solutions for at least 1 min.

Spin-lattice relaxation times were determined by the inversion-recovery method, ²³ in which a $(180^{\circ} - \tau - 90^{\circ} - t)_n$ pulse sequence is employed. The delay time, t, between each 90° radiofrequency pulse and the following 180° radiofrequency pulse was greater than 3.5 times the longest T_1 being measured²⁴ except in the following cases: C-1 of chlorobenzene in d_{\circ} -DMSO $(3.1 \times T_1)$; C-2, C-5 and C-6 of 1 $(3.2 \times T_1)$; C-1 and C-4 of 3a (about $2 \times T_1$). The width of a 90° pulse was $17 \ \mu \text{sec.}$ T_1 values were determined from a plot of $\ln (M_0 - M\tau)$ versus τ , where Mo is the thermal equilibrium value of the magnetisation and $M\tau$ is the initial value of the magnetisation following a 90° pulse at time τ . Only values of $\tau \lesssim T_1$ were employed in calculating T_1 values. Estimated accuracies of individual T_1 values are given in footnotes to the Tables.

Integrated intensities were obtained digitally from fully-relaxed spectra recorded with 90° radiofrequency pulse excitation. In some cases absolute NOE values were determined by comparing integrated intensities obtained from spectra recorded with complete proton decoupling with those from spectra recorded with

gated proton decoupling.²⁵ Spectra recorded with gated proton decoupling were employed in determining the ratio of 3a to 3b (see above). The ratio obtained in this way was in good agreement with that obtained by GC analysis. Chemical shifts were measured digitally, and are reported in parts per million downfield from internal TMS.

Assignments of resonances to specific carbons were obtained from the literature^{7,8} where possible. For 1, 2, 3a and 3b, assignments were made by a combination of chemical shift considerations,^{7,8} single frequency off-resonance proton decoupling experiments,^{7,8} and spin-lattice relaxation time measurements.

Acknowledgements—I wish to thank Drs. R. Kazlauskas and R. J. Wells for supplying the marine natural products used herein and for helpful discussions, and the Queen's Fellowships Committee for the award of a Fellowship in Marine Science.

REFERENCES

- ¹J. T. Baker and V. Murphy. Handbook of Marine Science. Compounds from Marine Organisms, Vol. 1. Chemical Rubber Co., Cleveland, Ohio (1976).
- ²F. J. McDonald, D. C. Campbell, D. J. Vanderah, F. J. Schmitz, D. M. Washecheck, J. E. Burks and D. van der Helm, *J. Org. Chem.* 40, 665 (1975); C. Ireland, M. O. Stallard, D. J. Faulkner, J. Finer and J. Clardy, *Ibid.* 41, 2461 (1976).
- ³F. X. Woolard, R. E. Moore and P. P. Roller, *Tetrahedron* 32, 2843 (1976); J. S. Mynderse and D. J. Faulkner, *Ibid.* 31, 1963 (1975); P. Crews and E. Kho, *J. Org. Chem.* 40, 2568 (1975); H.-E. Högberg, R. H. Thomson and T. J. King, *J. Chem. Soc.* Perkin I. 1696 (1976); H. H. Sun, S. M. Waraszkiewicz and K. L. Erickson, *Tetrahedron Letters*, 4227 (1976); J. A. Pettus, R. M. Wing and J. J. Sims, *Ibid.* 41 (1977).
- ⁴R. Kazlauskas, P. T. Murphy, R. J. Quinn, R. J. Well and P. Schönholzer, *Ibid.* 4451 (1976).
- ⁵D. B. Stierle, R. M. Wing and J. J. Sims, *Ibid.* 4455 (1976).
 ⁶R. Kazlauskas, P. T. Murphy, R. J. Quinn and R. J. Wells, *Ibid.*
- 37 (1977).

 ⁷J. B. Stothers, Carbon-13 NMR Spectroscopy, Academic Press,
- New York (1972).
- ⁸G. C. Levy and G. L. Nelson, Carbon-13 Nuclear Magnetic Resonance for Organic Chemists. Wiley-Interscience, New York (1972).
- ⁹J. R. Lyerla, D. M. Grant and R. D. Bertrand, *J. Phys. Chem.* 75, 3967 (1971).
- ¹⁰R. Freeman and H. D. W. Hill, Molecular Spectroscopy 1971, Institute of Petroleum, London (1972).
- ¹¹T. C. Farrar, S. J. Druck, R. R. Shoup and E. D. Becker, J. Am. Chem. Soc. 94, 699 (1972).
- ¹²G. C. Levy, J. D. Cargioli and F. A. L. Anet, *Ibid.* 95, 1527 (1973).
- ¹³A. Allerhand, D. Doddrell and R. Komoroski, J. Chem. Phys. 55, 189 (1971).
- ¹⁴R. S. Norton and A. Allerhand, J. Am. Chem. Soc. 98, 1007 (1976).
- ¹⁵A. Abragam, The Principles of Nuclear Magnetism. Oxford University Press, London (1961).
- ¹⁶T. C. Farrar and E. D. Becker, Pulse and Fourier Transform NMR. Academic Press, New York (1971).
- ¹⁷R. S. Norton, A. O. Clouse, R. Addleman and A. Allerhand, J. Am. Chem. Soc. 99, 79 (1977), see Fig. 2.
- ¹⁸E. A. C. Lucken, Nuclear Quadrupole Coupling Constants, Academic Press, London (1969).
- ¹⁹G. C. Levy, J. Chem. Soc. Chem. Commun. 352 (1972).
- ²⁰NOE is defined here as the ratio of the integrated intensity of a ¹³C resonance under conditions of proton decoupling to its intensity in the absence of proton decoupling.
- ²¹A. G. Andrewes, C. L. Jenkins, M. P. Starr, J. Shepherd and H. Hope, Tetrahedron Letters 4023 (1976).
- ²²R. S. Norton, R. G. Warren and R. J. Wells, *Tetrahedron Letters*, submitted for publication.
- ²³R. L. Vold, J. S. Waugh, M. P. Klein and D. E. Phelps, J. Chem. Phys. 48, 3831 (1968); R. Freeman and H. D. W. Hill, Ibid. 51, 3140 (1969).
- ²⁴G. C. Levy and I. R. Peat, J. Magn. Reson. 18, 500 (1975).
- ²⁵R. Freeman, H. D. W. Hill and R. Kaptein, *Ibid.* 7, 327 (1972).